Offline Handwritten Signature Verification Using Back Propagation Artificial Neural Network Matching Technique
نویسنده
چکیده
Handwriting is a skill that is highly personal to individuals and consists of graphical marks on the surface in relation to a particular language. Signatures of the same person can vary with time and state of mind. Several studies have come up with several methods on how to detect forgeries in signatures given to the security implication of signatures to daily business and personal transactions. This paper illustrates the proposed methodology for an offline handwritten signature identification and verification system which extracts certain dynamic features derived from velocity and acceleration of the pen together with other global parameters like total time taken and number of pen-ups in order to distinguish between forged signatures and genuine signatures signed under duress. Adaptive Window Positioning technique was employed for feature extraction, which focuses on not just the meaning of the handwritten signature but also on the individuality of the writer by dividing the handwritten signatures into 13 small windows of size nxn (13x13) such that it is large enough to contain ample information about the style of the author and small enough to ensure a good identification performance. Then, a signer specific codebook approach was used to generate a separate codebook of patterns for each individual signer such that the number of classes in each codebook varies as a function of the writing sample (signer), and a 3-layered Backward Propagation Artificial Neural Network (BPANN) method was used to produce a maximal matching and preserve the efficiency of the network. The proposed method was validated using a trained GPDS data set of 2400 original signatures of 100 different signers and comparing the results with those of two different known techniques of offline handwritten signature verification systems. The findings indicate that the proposed technique had the lowest ERR value of 7.23, indicating a more improved performance when compared against the two known techniques respectively thus proving to be a more efficient and superior method for offline handwritten signature identification and verification.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملGenuine and Forged Offline Signature Verification Using Back Propagation Neural Networks
---The need to make sure that only the right people are authorized to access high-security systems has paved the way for the development of systems for automatic personal authentication. Handwritten signature verification has been identified as a main contender in the search for a secure personal verification system. Signatures in offline systems are based on the scanned image of the signature....
متن کاملHybrid Soft Computing Method with Neurogenitic Algorithm for Offline Handwritten Signature Detection
In the era of emergent technology, security is that the foremost anxiety to avoid replicas and counterfeits. There are diverse Biometric systems that enable in personal identification, amongst those verification systems, one system is Signature Verification System. Signatures are substantiated discrimination on-line and offline systems. Every human being has their own writing style and hence th...
متن کاملDevelopment of Intelligent Network for Offline Signature Verification Using Pixel Density, Directional Method and Both Method Together
Today signature verification are used in various places for authentication and security purpose .Every signature or signed identified each person physiological or behavioral characteristic. Signature matching is very important in this time because any person can generated another person signature in fraud way. So systems have need for verification of the signature. The signature verification ca...
متن کاملNeural Network Based Offline Signature Recognition and Verification System
Handwritten signatures are the most natural way of authenticating a person’s identity. An offline signature verification system generally consists of four components: data acquisition, preprocessing, feature extraction, recognition and verification. This paper presents a method for verifying handwritten signature by using NN architecture. In proposed methods the multi-layer perceptron (MLP), mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014